Integrals and Miscellaneous 17

Previous posts:

Integrals and Miscellaneous 16

Integrals and Miscellaneous 15

Integrals and Miscellaneous 14

Integrals and Miscellaneous 13

Integrals and Miscellaneous 12

Integrals and Miscellaneous 11

Integrals and Miscellaneous 10

Integrals and Miscellaneous 9

Integrals and Miscellaneous 8

Integrals and Miscellaneous 7

Integrals and Miscellaneous 6

2023/3/3

\begin{eqnarray}\sum_{n=1}^\infty\frac{(-1)^nH_n^{(2)}}{n^3} &=& \frac{11}{32}\zeta(5)-\frac{5}{8}\zeta(2)\zeta(3) \\ \sum_{n=1}^\infty\frac{(-1)^nH_n^{(3)}}{n^2} &=& \frac{21}{32}\zeta(5)-\frac{3}{4}\zeta(2)\zeta(3) \\ \sum_{n=1}^\infty\frac{(-1)^nH_n^2}{n^3} &=& \frac{19}{32}\zeta(5)-4\Li_5\left(\frac{1}{2}\right)-4\Li_4\left(\frac{1}{2}\right)\ln2\\&&-\frac{7}{4}\zeta(3)\ln^22+\frac{2}{3}\zeta(2)\ln^32+\frac{11}{8}\zeta(2)\zeta(3)-\frac{2}{15}\ln^52\end{eqnarray}$$\int_0^1\frac{\ln^2 x\ln(1-x)\ln(1+x)}{x}dx=-\frac{27}{16}\zeta(5)+\frac{3}{4}\zeta(2)\zeta(3)$$

PROOF:

調和数を含んだ級数(Euler-sum)とゼータ関数 part16

2023/3/4 Integral involving logarithm and square root

$$I:=\int_0^1\frac{\ln x}{\sqrt{x(1-x^2)}}=-\frac{\sqrt{\pi} \G^2(\frac{1}{4})}{4\sqrt{2}}$$PROOF.
Putting $u=x^2$ yields\begin{eqnarray*}I&=&\frac{1}{4}\int_0^1 u^{-\frac{3}{4}}(1-u)^{-\frac{1}{2}}\ln udu\\&=&\frac{1}{4}\left.\dd{B(p,q)}{p}\right|_{p=1/4,q=1/2} \\&=& \frac{1}{4}B\left(\frac{1}{4},\frac{1}{2}\right)\left[\psi\left(\frac{1}{4}\right)-\psi\left(\frac{3}{4}\right)\right]\\&=&-\frac{\sqrt{\pi} \G^2(\frac{1}{4})}{4\sqrt{2}}\end{eqnarray*}

2023/3/5 Harmonic number,digamma function and derivative of 2F1

$$\sum_{n=1}^\infty\frac{(\frac{1}{2})_n}{n!(4n+1)}\left(1+\frac{1}{5}+\cdots+\frac{1}{4n-3}\right)=\frac{\G^2(\frac{1}{4})\ln2}{8\sqrt{2\pi}}$$PROOF.
Recall the formula\begin{equation}\sum_{n=1}^\infty\frac{(c)_n(\nu)_n}{(\lambda)_nn!}[\psi(c+n)-\psi(c)] =\frac{\G(\lambda)\G(\lambda-\nu-c)}{\G(\lambda-c)\G(\lambda-\nu)}\left(\psi(\lambda-c)-\psi(\lambda-\nu-c)\right)\tag{1}\end{equation}proved here. We set $c=\frac{1}{4}$ , $\lambda=\frac{5}{4}$ and $\nu=\frac{1}{2}$ to get$$\sum_{n=1}^\infty\frac{(\frac{1}{2})_n}{n!(4n+1)}\left(1+\frac{1}{5}+\cdots+\frac{1}{4n-3}\right)=\frac{\G^2(\frac{1}{4})\ln2}{8\sqrt{2\pi}}$$

2023/3/5 B

$$I:=\int_0^1\frac{\ln(1-x)}{\sqrt{x-x^3}}dx=\frac{\G^2(\frac{1}{4})}{4\sqrt{2\pi}}\left(\ln2-\pi\right)$$\begin{eqnarray*}\sum_{n=1}^\infty\frac{(\frac{1}{2})_n}{n!(4n+1)}\left(1+\frac{1}{5}+\cdots+\frac{1}{4n-3}\right) &=& \frac{\G^2(\frac{1}{4})}{8\sqrt{2\pi}}\ln2 \\ \sum_{n=1}^\infty\frac{(\frac{1}{2})_n}{n!(4n+1)}\left(\frac{1}{3}+\frac{1}{7}+\cdots+\frac{1}{4n-1}\right) &=& \frac{\G^2(\frac{1}{4})}{16\sqrt{2\pi}}\ln2\\\sum_{n=1}^\infty\frac{(\frac{1}{2})_n}{n!(4n+1)}\left(1+\frac{1}{3}+\cdots+\frac{1}{4n-1}\right) &=& \frac{3\G^2(\frac{1}{4})}{16\sqrt{2\pi}}\ln2\end{eqnarray*}PROOF:

logを含む難しい積分12(超幾何関数の微分の応用)

2023/3/28

From @infseriesbot\begin{eqnarray*}\int_0^1\frac{dx}{1+x\ln x} &=& \sum_{n=1}^\infty (-1)^{n-1}\int_0^1 x^{n-1}\ln^{n-1}xdx \\&=& \sum_{n=1}^\infty (-1)^{n-1}\cdot(-1)^1\frac{n-1}{n}\int_0^1 x^{n-1}\ln^{n-2}xdx \\&=& \sum_{n=1}^\infty (-1)^{n-1}\cdot(-1)^2\frac{(n-1)(n-2)}{n^2}\int_0^1 x^{n-1}\ln^{n-3}xdx \\&\vdots&\\ &=& \sum_{n=1}^\infty\frac{(n-1)!}{n^n}\end{eqnarray*}


\begin{eqnarray*}\int_0^1\frac{dx}{(1+x\ln x)^2} &=& \int_0^1\left(\sum_{n=1}^\infty(-1)^{n-1}x^{n-1}\ln^{n-1}x\right)^2dx \\&=& \sum_{n=1}^\infty n\int_0^1(-1)^{n-1}x^{n-1}\ln^{n-1}xdx\\&=&\sum_{n=1}^\infty n\frac{(n-1)!}{n^n}\\&=&\sum_{n=1}^\infty \frac{n!}{n^n}\end{eqnarray*}where we used Cauchy product and the result above.

2023/3/30

From @infseriesbot\begin{eqnarray*}\int_0^1\frac{t^{a-1}(1-t)^{b-1}}{1-zt^p(1-t)^q}dt &=& \int_0^1 t^{a-1}(1-t)^{b-1}\sum_{n=0}^\infty z^n t^{pn}(1-t)^{qn}dt \\&=& \sum_{n=0}^\infty z^n \int_0^1 t^{pn+a-1}(1-t)^{q+b-1}dt \\&=& \sum_{n=0}^\infty B\Bigl(pn+a,qn+b\Bigr)z^n \end{eqnarray*}

2023/4/1

$$\sum_{n=1}^\infty \frac{\zeta(2n)}{n}z^{2n}=\ln\frac{\pi z}{\sin\pi z}$$PROOF.
Recall the formula$$\sum_{n=1}^\infty \zeta(2n)z^{2n}=\frac{1}{2}(1-\pi z\cot\pi z)$$which we obtained here. After dividing it by $z$, we integrate from $\epsilon$ to $z$ to find \begin{eqnarray*}\sum_{n=1}^\infty \frac{\zeta(2n)}{n}z^{2n} &=& \int_\epsilon^z\left(\frac{1}{z}-\pi\cot\pi z\right)dz \\&=& \ln\frac{\pi z}{\sin\pi z}+\ln\frac{\sin\pi \epsilon}{\pi\epsilon} \\&=& \ln\frac{\pi z}{\sin\pi z}\quad( \mathrm{as}\;\epsilon\to0)\end{eqnarray*}


$$\sum_{n=1}^\infty \frac{\zeta(4n)}{n}z^{4n}=\ln\frac{\pi^2 z^2}{\sin\pi z\sinh\pi z}$$PROOF.
\begin{eqnarray*}\sum_{n=1}^\infty \frac{\zeta(4n)}{n}z^{4n} &=& \sum_{n=1}^\infty \frac{\zeta(2n)}{n}z^{2n} + \sum_{n=1}^\infty \frac{\zeta(2n)}{n}(iz)^{2n} \\&=& \ln\frac{\pi z}{\sin\pi z}+ \ln\frac{i\pi z}{\sin i\pi z}\\&=&\ln\frac{\pi z}{\sin\pi z}+ \ln\frac{\pi z}{\sinh \pi z} \\&=&\ln\frac{\pi^2 z^2}{\sin\pi z\sinh\pi z}\end{eqnarray*}

2023/4/5

Suppose $n\ge 2$ , $n\in \NN$ then$$\prod_{k=1}^{n-1}\sin\frac{\pi k}{n}=\frac{n}{2^{n-1}}$$PROOF.
We define $\a:=e^{\frac{2\pi}{n}i}$. From $\a$ is a primitive $n$-th root of 1, it follows that$$z^n-1=(z-1)\prod_{k=1}^{n-1}(z-\a^k)$$Differentiating by $z$ yields$$nz^{n-1}=\prod_{k=1}^{n-1}(z-\a^k)+(z-1)\frac{d}{dz}\prod_{k=1}^{n-1}(z-\a^k)$$Substituting $z=1$, we have \begin{eqnarray*}n &=& \prod_{k=1}^{n-1}(1-\a^k) \\&=& \prod_{k=1}^{n-1}\left(1-e^{\frac{2\pi k}{n}i}\right) \\&=& \prod_{k=1}^{n-1}e^{\frac{\pi k}{n}i}\left(e^{-\frac{\pi k}{n}i}-e^{\frac{\pi k}{n}i}\right) \\&=& (-2i)^{n-1}e^{i\frac{\pi}{n}(1+2+\cdots +(n-1))}\prod_{k=1}^{n-1}\sin\frac{\pi k}{n}\\&=& 2^{n-1}\prod_{k=1}^{n-1}\sin\frac{\pi k}{n}\end{eqnarray*}Hence,$$\prod_{k=1}^{n-1}\sin\frac{\pi k}{n}=\frac{n}{2^{n-1}}$$

Reference:
Rainville, E.D. (1960) Special Functions. The Macmillan Company, New York.

2023/4/6

$\mathfrak{R}s>1$ , $m\le n\in\NN$$$\zeta\left(1-s,\frac{m}{n}\right)=\frac{2\G(s)}{(2n\pi)^s}\sum_{l=1}^n\cos\left(\frac{\pi s}{2}-\frac{2\pi ml}{n}\right)\zeta\left(s,\frac{l}{n}\right)$$
Proof here:

【ζ4】フルヴィッツゼータ関数のフーリエ展開・複素積分・Critical Stripへの拡張(ゼータ関数の基礎4)

2023/4/8 Complex analysis

From @infseriesbot$$I:=\int_0^1 \left(\frac{1-x}{x}\right)^{ax}\sin\pi axdx =\frac{\pi a}{2}e^{-a}$$PROOF(not so rigorous).$$f(z):=\left(\frac{1-z}{z}\right)^{az}e^{-i\pi az}=e^{az\{\ln(1-z)-\ln z-i\pi\}}$$We also define the contour $C$ encircling the two branch points $0,1$ counter-clockwise, composed of two small arcs and two lines along the real axis. And we suppose$$-\pi\le\arg z<\pi\;,\; 0\le \arg(1-z)<2\pi$$ The branch cut exists just between $0$ and $1$, for we find f(z) is continuous when crossing the real axis at $-\epsilon$ and $1+\epsilon$.

\begin{eqnarray*}\oint_Cf(z)dz &=& \int_1^0 e^{ax\{\ln(1-x)-\ln x+i\pi\}}dx+\int_0^1 e^{ax\{\ln(1-x)-\ln x-i\pi\}}dx\\&=& -2i\int_0^1 \left(\frac{1-x}{x}\right)^{ax}\sin\pi axdx \\&=& -2iI\end{eqnarray*}Then we calculate the residue:\begin{eqnarray*}\oint_Cf(z)dz &=& -2\pi i\mathrm{Res}_{z=\infty}f(z) \\&=& 2\pi i\mathrm{Res}_{z=0}\frac{1}{z^2}f\left(\frac{1}{z}\right)\\&=& 2\pi i\mathrm{Res}_{z=0}\left[\frac{1}{z^2}e^{\frac{a}{z}\ln(1-z)}\right]\end{eqnarray*}Expanding RHS\begin{eqnarray*}\frac{1}{z^2}e^{\frac{a}{z}\ln(1-z)} &=& \frac{1}{z^2}\sum_{n=0}^\infty\frac{a^n\ln^n(1-z)}{n!z^n}\\&=&\frac{1}{z^2}\left[1+\frac{a}{z}\ln(1-z)+\frac{a^2}{2!z^2}\ln^2(1-z)+\frac{a^3}{3!z^3}\ln^3(1-z)+\cdots\right]\\&=& \frac{1}{z^2}\Biggl[1-\frac{a}{z}\left(z+\frac{z^2}{2}+\frac{z^3}{3}\cdots\right)\\&&+\frac{a^2}{2!z^2}\left(z+\frac{z^2}{2}+\frac{z^3}{3}\cdots\right)^2\\&&-\frac{a^3}{3!z^3}\left(z+\frac{z^2}{2}+\frac{z^3}{3}\cdots\right)^3+\cdots\Biggr]\end{eqnarray*}Hence,$$a_{-1}=-\frac{a}{2}e^{-a}$$$$\therefore\quad\oint_Cf(z)dz=-2\pi i\frac{a}{2}e^{-a}$$Therefore,$$I=\frac{\pi a}{2}e^{-a}$$

REFERENCE:
「複素線積分」Wikipedia(2023/4/7)
Residue at ∞ ,The LibreTexts libraries(2023/4/7)

2023/4/9 frobenius at infinity

Solve $$y''(z)+\frac{1}{z^3}y(z)=0$$SOLUTION.
The equation has an irregular singular point at $z=0$ then we cannot use Frobenius method there. Substituting $z=1/w$ yields$$\frac{d^2u}{dw^2}+\frac{2}{w}\frac{du}{dw}+\frac{1}{w}u=0\;,\; u(w):=y(z)$$This equation has a regular singular point at $w=0$ then the Frobenius series exists.

However, instead of Frobenius method, we substitute $4w=\zeta^2$ and $u=\phi(\zeta)/\zeta$ to find$$\zeta^2\phi''+\zeta\phi'+(\zeta^2-1)\phi=0$$which is the Bessel equation of $\nu=1$. Hence,$$\phi(\zeta)=2A J_1(\zeta)+2B Y_1(\zeta)$$where $A,B$ are arbitrary constants.$$\therefore\quad y(z)=\sqrt{z}\left[AJ_1\left(\frac{2}{\sqrt{z}}\right)+BY_1\left(\frac{2}{\sqrt{z}}\right)\right]$$

2023/4/10 Approximation of HGF at z =1

$$\lim_{x\to 0}\frac{F\left[\begin{matrix}a,b\\a+b\end{matrix};1-x\right]}{\ln\frac{1}{x}}=\frac{1}{B(a,b)}$$PROOF.
Recall the linear combination of 2F1, namely\begin{eqnarray}F\left[\begin{matrix}a,b\\c\end{matrix};z\right] &=& \frac{\G(c)\G(c-a-b)}{\G(c-a)\G(c-b)}F\left[\begin{matrix}a,b\\a+b-c+1\end{matrix};1-z\right]\\&&\quad+\frac{\G(c)\G(a+b-c)}{\G(a)\G(b)}(1-z)^{c-a-b}F\left[\begin{matrix}c-a,c-b\\c-a-b+1\end{matrix};1-z\right]\end{eqnarray}which we obtained here. Substituting $c=a+b+\epsilon$ we find\begin{eqnarray*}F\left[\begin{matrix}a,b\\a+b+\epsilon\end{matrix};z\right] &=& \frac{\G(a+b+\epsilon)\G(1+\epsilon)\G(1-\epsilon)}{\epsilon\G(a+\epsilon)\G(b+\epsilon)\G(a)\G(b)}\\&&\times\sum_{n=0}^\infty\frac{(1-z)^n}{n!}\left(\frac{\G(a+n)\G(b+n)}{\G(1+n-\epsilon)}-\frac{\G(a+n+\epsilon)\G(b+n+\epsilon)}{\G(1+n+\epsilon)}(1-z)^\epsilon\right)\\&=&\frac{\G(a+b+\epsilon)\G(1+\epsilon)\G(1-\epsilon)}{\G(a+\epsilon)\G(b+\epsilon)\G(a)\G(b)}\\&&\times\sum_{n=0}^\infty\frac{(1-z)^n}{n!}\left(\frac{f(\epsilon)-f(0)}{\epsilon}-\frac{g(\epsilon)-g(0)}{\epsilon}\right)\end{eqnarray*}where we define$$f(\epsilon)=\frac{\G(a+n)\G(b+n)}{\G(1+n-\epsilon)}\;,\;g(\epsilon)=\frac{\G(a+n+\epsilon)\G(b+n+\epsilon)}{\G(1+n+\epsilon)}(1-z)^\epsilon$$Taking the limit of $\epsilon\to0$ yields$$F\left[\begin{matrix}a,b\\a+b\end{matrix};z\right]=\frac{1}{B(a,b)}\sum_{n=0}^\infty\frac{(a)_n(b)_n}{n!^2}(1-z)^n\left[2\psi(n+1)-\psi(a+n)-\psi(b+n)-\ln(1-z)\right]$$Hence, when $\delta<<1$, $$F\left[\begin{matrix}a,b\\a+b\end{matrix};1-\delta\right]=\frac{1}{B(a,b)}\left[\ln\frac{1}{\delta}+O(1)\right]$$Therefore,$$\lim_{x\to 0}\frac{F\left[\begin{matrix}a,b\\a+b\end{matrix};1-x\right]}{\ln\frac{1}{x}}=\frac{1}{B(a,b)}$$Application here.


REFERENCE:
E.G.C.Poole,Introduction to the Theory of Linear Differential Equations(1936), chapter 6 Ex12.
Bateman.H, Eldélyi.A, Higher Transcendental Functions vol.1 (1953), eq(2.10)

2023/4/18

From @MAGNA81407795Evaluate that $$I(u,s,n):=\int_0^\infty\frac{x^{s-1}dx}{\sqrt{x^2+u^2}(x+\sqrt{x^2+u^2})^n}$$SOLUTION.\begin{eqnarray*}I(u,s,n) &=& u^{s-n-1}\int_0^\infty \frac{y^{s-1}}{\sqrt{y^2+1}(y+\sqrt{y^2+1})^n}dy\quad(x=uy) \\&=& \frac{u^{s-n-1}}{2^{s-1}}\int_1^\infty z^{-n-s}(z^2-1)^{s-1}dx\quad\left(z=y+\sqrt{y^2+1}\right) \\&=& \frac{u^{s-n-1}}{2^s}\int_0^1 t^{\frac{n-s+1}{2}-1}(1-t)^{s-1}dt\quad(t=z^{-2}) \\&=& \frac{u^{s-n-1}\G(s)\G(\frac{n-s+1}{2})}{2^s\G(\frac{n+s+1}{2})} \end{eqnarray*}

2023/4/19

From @fhdalalwi1412
$$I:=\int_0^1\frac{\arctan x}{x\sqrt{1-x^2}}dx=\frac{\pi}{2}\ln(1+\sqrt{2})$$PROOF.
$$I(s):=\int_0^1\frac{\arctan sx}{x\sqrt{1-x^2}}dx$$then we easily see $I(0)=0$ , $I(1)=I$.\begin{eqnarray*}I'(s) &=& \int_0^1\frac{dx}{(1+s^2x^2)\sqrt{1-x^2}} \\&=& \int_0^\frac{\pi}{2}\frac{d\t}{(1+s^2\sin^2\t)}\quad(x:=\sin\t) \\&=& \int_0^\infty\frac{du}{1+s^2+u^2}\quad(u:=\cot\t) \\&=& \frac{\pi}{2\sqrt{1+s^2}}\end{eqnarray*}Hence,$$I(s)=\frac{\pi}{2}\mathrm{arsinh}s = \frac{\pi}{2}\ln(s+\sqrt{s^2+1})$$$$\therefore\quad I=\frac{\pi}{2}\ln(1+\sqrt{2})$$

2023/4/20

From @EylemGercek$$I:=\int_0^a\frac{dx}{1+b^{\frac{x}{a}-1}}$$SOLUTION.\begin{eqnarray*} I &=& a\int_0^1\frac{dx}{1+b^{x-1}} \\&=& \frac{a}{\ln b}\int_\frac{1}{b}^1\frac{dy}{y(1+y)}\quad(b^{x-1}=y)\\ &=& \frac{a}{\ln b}\ln\frac{1+b}{2}\end{eqnarray*}

Next:

Integrals and Miscellaneous 18

応援のおねがい

Please support me!

まめしば
まめしば

記事を気に入って下さった方、「応援してあげてもいいよ」という方がいらっしゃったら15円から可能なので支援していただければ幸いです。情報発信を継続していくため、サーバー維持費などに充てさせていただきます。

ご支援いただいた方は、こちらで確認できます。

Amazonギフトの場合、
Amazonギフト券- Eメールタイプ – Amazonベーシック
より、金額は空白欄に適当に(15円から)書きこんで下さい。受取人は「mamekebiamazonあっとgmail.com」です(あっとは@に置き換えてください)。贈り主は「匿名」等でOKです。全額がクリエイターに届きます。

OFUSEは登録不要で、100円から寄付できます。金額の90%がクリエイターに届きます。

OFUSEで応援を送る

codocは登録不要で、100円から寄付できます。金額の85%がクリエイターに届きます。

コメントを残す

メールアドレスが公開されることはありません。 が付いている欄は必須項目です

CAPTCHA