Integrals and Miscellaneous 19

Previous posts:

Integrals and Miscellaneous 18

Integrals and Miscellaneous 17

Integrals and Miscellaneous 16

Integrals and Miscellaneous 15

Integrals and Miscellaneous 14

Integrals and Miscellaneous 13

Integrals and Miscellaneous 12

Integrals and Miscellaneous 11

Integrals and Miscellaneous 10

Integrals and Miscellaneous 9

Integrals and Miscellaneous 8

Integrals and Miscellaneous 7

Integrals and Miscellaneous 6

2023/7/2

$$\sqrt[3]{2+11i}+\sqrt[3]{2-11i}=4$$

2023/7/8

Can we test the convergence of infinite products with the convergence of series ?$$P:=\prod_{n=1}^\infty (1+z_n)\quad ,\quad S:=\sum_{n=1}^\infty z_n$$then\begin{eqnarray*}P:\mathrm{absolutely\: convergent}&\Longleftrightarrow& S:\mathrm{absolutely\: convergent}\\P:\mathrm{conditionally\: convergent}&\nLeftrightarrow& S:\mathrm{conditionally\: convergent}\\P:\mathrm{divergent}&\nLeftrightarrow& S:\mathrm{divergent}\end{eqnarray*}

2023/7/9

From @SrinivasR1729

$$S:=\sum_{n=0}^\infty\frac{(8n+1)!!}{(8n+2)!!(2n+1)(8n+1)}=\frac{2}{3}\left(\sqrt{2}-\sqrt{\sqrt{2}-1}\right)$$PROOF.\begin{eqnarray*}S &=& \frac{1}{2}\sum_{n=0}^\infty \frac{(\frac{1}{8})_n(\frac{3}{8})_n(\frac{5}{8})_n(\frac{7}{8})_n}{(\frac{3}{4})_n(\frac{5}{4})_n(\frac{3}{2})_n n!} \\&=&\frac{1}{2}{}_4F_3\left[\begin{matrix}\frac{1}{8},\frac{3}{8},\frac{5}{8},\frac{7}{8}\\\frac{3}{4},\frac{5}{4},\frac{3}{2}\end{matrix};1\right]\end{eqnarray*}Exton[1] deduced (and Brychkov[2] corrected) that$${}_4F_3\left[\begin{matrix}\frac{a+1}{2},\frac{a}{2}+1,\frac{b+1}{2},\frac{b}{2}+1\\\frac{a-b}{2}+1,\frac{a-b+3}{2},\frac{3}{2}\end{matrix};1\right]=\frac{1}{2ab}\left(\frac{\G(2+a-b)\G(1-2b)}{\G(1-b)\G(1+a-2b)}-\frac{\G(2+a-b)\G(1+\frac{a}{2}}{\G(1+a)\G(1+\frac{a}{2}-b)}\right)$$where $\mathfrak{R}b<\frac{1}{2}$. Substituting $a=-\frac{3}{4}$ , $b=-\frac{1}{4}$ yields$${}_4F_3\left[\begin{matrix}\frac{1}{8},\frac{3}{8},\frac{5}{8},\frac{7}{8}\\\frac{3}{4},\frac{5}{4},\frac{3}{2}\end{matrix};1\right]=\frac{4}{3}\left(\sqrt{2}-\sqrt{\sqrt{2}-1}\right)$$Hence,$$\sum_{n=0}^\infty\frac{(8n+1)!!}{(8n+2)!!(2n+1)(8n+1)}=\frac{2}{3}\left(\sqrt{2}-\sqrt{\sqrt{2}-1}\right)$$

[1] H.Exton(1997), Some new summation formulae for the generalised hypergeometric function of higher order
[2] Yury Brychkov, Handbook of Special Functions: Derivatives, Integrals, Series and Other Formulas

2023/7/13

From @6ahRJ6PeIkQWmsk$$I:=\int_0^\infty\frac{\sin x\ln x}{x}dx=-\frac{\g\pi}{2}$$PROOF.$$f(z):=\frac{e^{iz}\ln z}{z}$$We consider the $z$-plane whose negative imaginary axis is the brunch cut ($-\frac{\pi}{2}<\arg z<\frac{3}{2}\pi$).

There is no singularity in the above contour then\begin{eqnarray*}0 &=& \int_\infty^\epsilon\frac{e^{-ix}(\ln x+i\pi)}{-x}(-dx)+ \int_\pi^0 e^{i\epsilon e^{i\t}}(\ln\epsilon+i\t) id\t \\&&+\int_\epsilon^\infty\frac{e^{ix}\ln x}{x}dx+\int_0^\pi e^{iRe^{i\t}}(\ln R+i\t )id\t\\&=& 2i\: I-i\pi\int_\epsilon^\infty\frac{e^{-ix}}{x}dx -i\int_0^\pi e^{i\epsilon e^{i\t}}(\ln\epsilon+i\t) d\t +i\int_0^\pi e^{iRe^{i\t}}(\ln R+i\t )d\t\\&=& 2i\: I-i\pi\left(-\mathrm{Ci}(\epsilon)-i\frac{\pi}{2}\right) -i\pi\ln\epsilon+\frac{\pi^2}{2} +i\int_0^\pi e^{iRe^{i\t}}(\ln R+i\t )d\t\\&=&2i\: I+i\pi\mathrm{Ci}(\epsilon)-i\pi\ln\epsilon+i\int_0^\pi e^{iRe^{i\t}}(\ln R+i\t )d\t\end{eqnarray*}The last term is\begin{eqnarray*}\left|\int_0^\pi e^{iRe^{i\t}}(\ln R+i\t )d\t\right| &\le&\int_0^\pi e^{-R\sin\t}(\ln R+\t)d\t \le(\ln R+\pi)\int_0^\pi e^{-R\sin\t}d\t \\&=& \frac{\ln R+\pi}{2}\int_0^\frac{\pi}{2} e^{-R\sin\t}d\t \le\frac{\ln R+\pi}{2}\int_0^\frac{\pi}{2} e^{-\frac{2R}{\pi}\t}d\t \\&=&\frac{\ln R+\pi}{2}\frac{\pi}{2R}(1-e^{-R}) \rightarrow 0\end{eqnarray*}From $\mathrm{Ci}(x)=\g+\ln x +O(x^2)$ it follows that$$\int_0^\infty\frac{\sin x\ln x}{x}dx=-\frac{\g\pi}{2}$$REFERENCE:
Abramowitz, M., Stegun, I. A. (1964). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York: Dover. 【楽天はココ

2023/7/16

From @nasya_tw $$I:=\int_0^{3^{-1/3}}\frac{dx}{(1-x^6)^\frac{2}{3}}=\frac{\G^3(\frac{1}{3})}{2^\frac{7}{3}\sqrt{3}\pi}$$PROOF.\begin{eqnarray*}I &=& \int_0^{3^{-1/3}}\sum_{n=0}^\infty\frac{(\frac{2}{3})_n}{n!}x^{6n}dx\\&=&\frac{1}{3^{1/3}}\sum_{n=0}^\infty \frac{(\frac{2}{3})_n}{n!(6n+1)9^n}\\&=&\frac{1}{3^{1/3}} F\left[\begin{matrix}\frac{2}{3},\frac{1}{6}\\\frac{7}{6}\end{matrix};\frac{1}{9}\right]\end{eqnarray*}Recall the formula$$F\left[\begin{matrix}2s,\frac{1}{2}-s\\s+\frac{5}{6}\end{matrix};\frac{1}{9}\right]=\frac{3^{s}\G(s+\frac{5}{6})\G(\frac{2}{3})}{4^{s}\G(s+\frac{2}{3})\G(\frac{5}{6})}$$ which we deduced here. Setting $s=1/3$ yields$$I=\frac{\G^3(\frac{1}{3})}{2^\frac{7}{3}\sqrt{3}\pi}$$

2023/7/18

\begin{eqnarray}\sum_{n=1}^\infty\frac{H_n^2}{n(n+1)}x^n &=& \Li_3(x)-\frac{2\Li_3(1-x)}{x}+\left(\frac{1}{x}-1\right)\ln(1-x)\Li_2(x)+\left(\frac{1}{x}-1\right)\frac{\ln^3(1-x)}{3}\\&&+\frac{2}{x}\ln(1-x)\Li_2(1-x)+\frac{\ln x\ln^2(1-x)}{x}+\frac{2\zeta(3)}{x}\end{eqnarray}$$\sum_{n=1}^\infty\frac{H_n^2}{n(n+1)2^n}=\frac{11}{8}\zeta(3)-\frac{\pi^2}{6}\ln 2-\frac{\ln^32}{3}$$$$\sum_{n=1}^\infty\frac{H_n^2}{n(n+1)}=3\zeta(3)$$

調和数を含んだ級数とゼータ関数 part3

2023/7/27

【8】整関数とワイエルシュトラスの因数分解定理①(基本乗積・種数)

【9】整関数とワイエルシュトラスの因数分解定理②(完全版)

$$f(z)=z^m e^{g(z)}\prod_{n=1}^\infty \left(1-\frac{z}{\lambda_n}\right)e^{\frac{z}{\lambda_n}+\frac{z^2}{2\lambda_n^{~2}}+\cdots\frac{z^{k_n}}{k_n\lambda_n^{~k_n}}}$$

2023/7/29

$$\sum_{n=1}^\infty\frac{(a)_n}{n!}H_nx^n=-(1-x)^{-a}\ln\frac{1-x}{x}+\{\psi(a)+\g\}(1-x)^{-a}+\frac{1}{a}F\left[\begin{matrix}1,a\\1+a\end{matrix};1-x\right]$$$$\therefore\quad \sum_{n=0}^\infty\frac{(\frac{1}{2})_n}{n!}H_nx^n=\frac{2}{\sqrt{1-x}}\ln\frac{1+\sqrt{1-x}}{2\sqrt{1-x}}$$$$\sum_{n=0}^\infty\frac{(\frac{1}{2})_n}{n!}(2H_{2n}-H_n)x^{n}=-\frac{\ln(1-x)}{\sqrt{1-x}}$$

超幾何関数のパラメータによる微分とディガンマ関数、一般化超幾何関数の特殊値1

調和数と超幾何級数3

2023/7/31

$$f(z)=g(z)\left(\frac{z}{R}\right)^m\prod_{n=1}^\infty \frac{|a_n|}{a_n}\frac{R(z-a_n)}{\bar{a_n}z-R^2}$$

【10】開円板上の正則関数とBlaschke積

2023/9/2

Brafman's generating functions$${}_2F_1\left[\begin{matrix}c,1-c\\1\end{matrix};\frac{1-t-\rho}{2}\right]{}_2F_1\left[\begin{matrix}c,1-c\\1\end{matrix};\frac{1+t-\rho}{2}\right]=\sum_{n=0}^\infty\frac{(c)_n(1-c)_nP_n(x)}{n!^2}t^n$$where $\rho=(1-2xt+t^2)^{1/2}$.

[1] Brafman, F. (1951). Generating functions of Jacobi and related polynomials. Proceedings of the American Mathematical Society, 2(6), 942–949.
[2] Rainville, E.D. (1960) Special Functions. The Macmillan Company, New York.

2023/9/21

Machin's formula$$\frac{\pi}{4}=4\arctan\left(\frac{1}{5}\right)-\arctan\left(\frac{1}{239}\right)$$Euler's formula$$\frac{\pi}{4}=\arctan\left(\frac{1}{2}\right)+\arctan\left(\frac{1}{3}\right)$$Hermann's formula$$\frac{\pi}{4}=2\arctan\left(\frac{1}{2}\right)-\arctan\left(\frac{1}{7}\right)$$Hutton's formula$$\frac{\pi}{4}=2\arctan\left(\frac{1}{3}\right)+\arctan\left(\frac{1}{7}\right)$$Euler's formula$$\pi=20\arctan\left(\frac{1}{7}\right)+8\arctan\left(\frac{3}{79}\right)$$Dase's formula(?)$$\frac{\pi}{4}=\arctan\left(\frac{1}{2}\right)+\arctan\left(\frac{1}{5}\right)+\arctan\left(\frac{1}{8}\right)$$Ferguson's formula(?)$$\frac{\pi}{4}=3\arctan\left(\frac{1}{4}\right)+\arctan\left(\frac{1}{20}\right)+\arctan\left(\frac{1}{1985}\right)$$Shanks-Wrench(?)$$\pi=24\arctan\left(\frac{1}{8}\right)+8\arctan\left(\frac{1}{57}\right)+4\arctan\left(\frac{1}{239}\right)$$

[1] Borwein & Borwein, Pi and the AGM, 340-345p

Next:

Integrals and Miscellaneous 20

応援のおねがい

Please support me!

まめしば
まめしば

記事を気に入って下さった方、「応援してあげてもいいよ」という方がいらっしゃったら15円から可能なので支援していただければ幸いです。情報発信を継続していくため、サーバー維持費などに充てさせていただきます。

ご支援いただいた方は、こちらで確認できます。

Amazonギフトの場合、
Amazonギフト券- Eメールタイプ – Amazonベーシック
より、金額は空白欄に適当に(15円から)書きこんで下さい。受取人は「mamekebiamazonあっとgmail.com」です(あっとは@に置き換えてください)。贈り主は「匿名」等でOKです。全額がクリエイターに届きます。

OFUSEは登録不要で、100円から寄付できます。金額の90%がクリエイターに届きます。

OFUSEで応援を送る

codocは登録不要で、100円から寄付できます。金額の85%がクリエイターに届きます。

コメントを残す

メールアドレスが公開されることはありません。 が付いている欄は必須項目です

CAPTCHA